Studying the processes of model formation in the interaction of cleaner and pollutant molecules using the example of hydrogen sulfide and asparagine
Abstract
The article examines the processes of model formation in the interaction of cleaner and pollutant molecules using the example of hydrogen sulfide and asparagine, and emphasizes the importance of computer modeling in the development of effective cleaning methods. The study is aimed at the molecular interaction between asparagine and hydrogen sulfide, conducted using the semi-empirical PM3 method. The aim of the study was to identify active atoms in the structure of asparagine, with which hydrogen sulfide molecules can interact, leading to the formation of compounds with sufficient strength. The research was carried out using quantum chemical calculations of energy-optimized structures of individual molecules and their interactions. The search for the minimum total energy was carried out for all independent geometric parameters in the process of complete optimization of the geometry of the molecule. The results of calculations of the main charge, energy and geometric parameters are presented. The scheme of the active atoms of the asparagine molecule in relation to hydrogen sulfide, obtained on the basis of quantum chemical studies, is presented. The rules used made it possible to identify real-life adsorption complexes among the many simulated ones. The findings provide new perspectives for understanding the implications of this interaction in the context of medical and environmental research.
About the Authors
Anna N. TsygutaRussian Federation
Senior lecturer of the Department «Mathematical and Natural Sciences»
Lesya I. Golovatskaya
Russian Federation
Candidate of Tech-nical Sciences, Associate Professor, Professor of the Department of «Mathematical and Natural Sciences»
References
1. V Irkutskoi oblasti iz-za utechki serovodoroda postradali shest' chelovek. Available at: https://www.rbc.ru/rbcfreenews/5fe1f9af9a79470a5ca566a0 (accessed 10.02.2024).
2. Vybrosy serovodoroda v Omske prevysili normu v 15 raz. Available at: https://newizv.ru/news/2020-07-31/vybrosy-serovodoroda-v-omske-prevysili-normu-v-15-raz-307394 (accessed 10.02.2024).
3. V Nizhnem Tagile byl zafiksirovan vybros serovodoroda. Available at: https://tagilcity.ru/news/2020-06-04/v-nizhnem-tagile-byl-zafiksirovan-vybros-serovodoroda-231893 (accessed 10.02.2024).
4. Bystrova O.N. Vliyanie serovodoroda na korroziyu uglerodistoi stali: naturnye ispytaniya v rezervuarakh po ochistke stochnykh neftepromyslovykh vod, Vestnik Kazanskogo tekhnologicheskogo universiteta, 2017, no. 3, рр. 31–35.
5. Okhrana okruzhayushchei sredy v Rossii. 2022. 0-92 Moscow, 2022, 115 р. Available at: https://rosstat.gov.ru/storage/mediabank/Ochrana_okruj_sredi_2022.pdf (accessed 10.02.2024).
6. Asparagin, istoriya vozniknoveniya. Available at: http://polyguanidines.ru/a_arginin&asparagin&0.htm (accessed 10.02.2024).
7. Korkina Yu.S., Valiev T.T. L-asparaginaza: novoe ob izvestnom preparate. Pediatricheskaya farmakologiya – Pediatric pharmacology, 2021. no. 3, рр. 227–232.
8. Al'myasheva O.V., Gusarov V.V., Lebedev O.A. Poverkhnostnye yavleniya. Saint Petersburg, SPBGEHTU “LEHTI” Publ., 2004, 28 р.
9. Bagaturyants A., Vener M. Multiscale modeling in nanophotonics: Materials and simulations, Jenny Stanford Publishing, 2017, 291 p.
10. Stewart J.J.P. Optimization of Parameters for Semiempirical Methods, J. Comput. Chem, 1989, vol. 10, no. 2, рр. 209–220.
11. Zharkikh L.I. Kvantovo-khimicheskoe klasternoe modelirovanie protsessa adsorbtsii serovodoroda na poverkhnosti belkovoi membrany, Vestnik MGOU. Seriya khimicheskaya, 2006, no. 9, рр. 56–59.
12. Zharkikh L.I. at al. Avtomatizatsiya raschetov osnovnykh ehnergeticheskikh i zaryadovykh kharakteristik pri modelirovanii mezhmolekulyarnykh vzaimodeistvii, Svidetel'stvo o gosudarstvennoi registratsii programmy dlya EHVM no. 2011611798 Rossiiskaya Federatsiya, 28.02.2011.
Review
For citations:
Tsyguta A.N., Golovatskaya L.I. Studying the processes of model formation in the interaction of cleaner and pollutant molecules using the example of hydrogen sulfide and asparagine. Kaspijskij nauchnyj zhurnal. 2024;2(1):стр. 66-75. (In Russ.)